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These results provide confidence in the experimental procedure chosen to measure species densities in
the boundary layer of an ablating material and allowed the extraction of the nitridation probabilities �CN

N
obtained through the numerical procedure, described in section III.

Input for this procedure are the boundary layer edge condition obtained through simulation of the plasma
flow field, as well as carbon blowing rates and surface temperatures from the experimental observations.
Nitrogen recombination at the surface was neglected in the numerical model. The uncertainty on the ex-
perimental mass blowing rate, imposed in the numerical simulations to calculate the nitridation reaction
probability by means of Eq. (8), is mainly due to the spatial resolution of the DSLR images for recession
analysis (⇠ ±0.03mm) that was of the same order as the smallest recession (G1, G2 ). Hence, those two
conditions were neglected during the analysis. Nitridation reaction probabilities are listed in Table 1, and
are further compared in Fig. 13 to values from literature.19,49,43,44,50 The nitridation probabilities found
during this analysis span one order of magnitued from 0.0031 (2140K) to 0.0128 (2575K).
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Figure 13. Active nitridation reaction probability comparison with data from literature;19,43,44,50 our data
compares well to Suzuki49 and extends to higher temperatures.

The red dots indicate the values that corresponds to the nominal value of the calculated reaction prob-
abilities, the uncertainties are indicated. As shown, the active nitridation reaction probabilities fall in the
range of the values obtained by other researchers. Our data compares especially well with data of Suzuki et
al.49 and presents an extension to higher temperatures. Comparing this graph with the flow field composi-
tion (Fig. 11(b)), we notice that nitridation was negligible for conditions where nitrogen was not yet fully
dissociated.

We suggest additional measurements on graphite ablation in air plasma, where the surface recession may
be used to track the full boundary layer radial emission profile. Although oxidation would be the dominant
surface reaction, CN violet emission could still be observed as shown in previous references.27 We further
suggest to apply the proposed experimental method to pyrolyzing carbon-phenolic ablators, for evaluation
of species densities of molecules originating from hydro-carbons, such as C2. We presented a preliminary
analysis of the C2 molecule during cork P50 ablation in another reference,51 and propose the comparison of
such data with a stagnation-line model including pyrolysis gas chemistry for validation purposes.

V. Concluding Remarks and Perspective

We investigated graphite ablation in nitrogen plasmas produced by the VKI Plasmatron, applying emis-
sion spectroscopy in the boundary layer and a code with ablative boundary condition. Our study aims at
the estimation of nitridation reaction probabilities of carbon at surface temperatures between 1500K and
2600K, and determination of CN species densities in the boundary layer for comparison and validation of
the numerical model. The spectroscopic data was further used for a more detailed analysis of the produced
CN violet emission.

A high resolution spectrometer combined with a two-dimensional ICCD array enabled spectral measure-
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State-of-the-art nitridation efficiencies differ by several orders of magnitude
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•Points result from complex numerical-experimental approaches

•Different facilities and model approximations involved

•Diverse landscape in treatment of the data

•Extension to high temperature data

•Models do not account for carbon injection in BL
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Helber, Turchi, Magin. Carbon, 125 : 582–594, 2017
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•Graphite samples exposed to a subsonic plasma flow

•Four conditions at different surface temperatures recorded [2,200-2,600K]

•Recession rates and CN radiative signature measured during steady state
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arg min
c

J(p) = ∥yobs − f(Xobs, c, p)∥2 + ℛ(Xobs, c, p)

Helber, Turchi, Magin. Carbon, 125 : 582–594, 2017.
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Helber, Turchi, Magin. Carbon, 125 : 582–594, 2017.

arg min
c

J(p) = ∥yobs − f(Xobs, c, p)∥2 + ℛ(Xobs, c, p)

Deterministic inverse problem

• What if we don’t really know parameters ?p

• What if  is noisy?yobs

• What if  is wrong?f
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Recession rate Reacting flow model 
w/ surface reaction

Different surface 
temperatures

γCN
N

Everything else…
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• What if we don’t really know parameters ?  
Epistemic uncertainty

p →
• What if  is noisy?  Aleatory uncertaintyyobs →

• What if  is wrong?  Model-form uncertaintyf →

arg min
c

J(p) = ∥yobs − f(Xobs, c, p)∥2 + ℛ(Xobs, c, p)

Deterministic inverse problem Stochastic inverse problem

yobs = f(Q, Xobs) + E

Q ∼ 𝒫(q), E ∼ 𝒫(e)Q = {C, P}
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Likelihood functionPosterior distribution
Prior distribution

Bayesian formalism

𝒫 (Q |yobs) =
𝒫 (yobs |Q) x 𝒫 (Q)

𝒫(yobs)
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How to efficiently combine models, experiments and stochastic inference methods 
to extract accurate nitridation models with estimation of their uncertainty?
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Posterior distribution

Prior distribution

Posterior sampling

MCMC algorithm with adaptation of the 
covariance matrix with an initial burn-in 
phase (50% samples)
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Likelihood building

We have to provide a statistical model to compare 
our data to model predictions

2 Likelihood building

ℒ(dobs |q) ∝ ∏
i∈ℐ

∏
j ∈ 𝒮
j ∉ ℐ

exp [−
|di − qi |

2

2σ2
di

] exp −
|dj − d̄j(qj) |2

2σ2
dj

3Surrogate modeling

GPR (q)

1

dobs − f(Q, X) = E

𝒫(q)

𝒫(q |dobs)

Sensitivity analysis

Sobol indices
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del Val, Le Maître, Congedo, Magin. Carbon, 200 : 199–214, 2022 7
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γCN
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Tw = 2225 K Tw = 2575 K
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del Val, Magin, Congedo. Int J Heat Mass Transfer (under review), 2022. Preprint available on RG

ℳ0

ℳ1

ℳn

Denominator of Bayes’ rule𝒫(yobs |ℳ0)
∑i 𝒫(yobs |ℳi)

𝒫(yobs |ℳ1)
∑i 𝒫(yobs |ℳi)

𝒫(yobs |ℳn)
∑i 𝒫(yobs |ℳi)
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arg min
c

J(p) = ∥yobs − f(Xobs, c, p)∥2 + ℛ(Xobs, c, p)

• What if  is wrong?  Model-form uncertaintyf →
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del Val, Magin, Congedo. Int J Heat Mass Transfer (under review), 2022. Preprint available on RG

More informative experiments can be 
proposed based on these insights
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Capriati, del Val, Congedo, Minton, Schwartzentruber, Magin. (ongoing…) 11
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Take home messages

•Uncertainty is a necessary component that should be modeled in addition to the physical problem of interest
•Incorporating uncertainties in inverse problems requires the overhaul of deterministic inverse techniques 
•The Bayesian formalism computes an objective measure of uncertainty, informed by experimental data

Uncertainty modeling/stochastic inverse problems

Development of Bayesian inference frameworks for the stochastic calibration of graphite nitridation

•A stochastic methodology has been developed to incorporate uncertainties affecting the calibration of nitridation
•Recession rates and CN densities used jointly to infer nitridation efficiencies
•Model-form uncertainties incorporated through a Bayesian Model Averaging method

•Detailed mechanism can get information from both experiments at low and high pressures
•Calibrated model seems to fit well the experimental data
•Still early in the work but hope to have results with a CFD model soon

Finite-rate nitridation model calibrated using molecular beam and Plasmatron data
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Questions?

THANK YOU


